{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"","authors":[{"authorName":"石旺舟","id":"0542da36-4bcd-47e5-a96f-1168d5e5f5fd","originalAuthorName":"石旺舟"},{"authorName":"","id":"0a62451a-0e5a-4761-a462-d767eb597789","originalAuthorName":"梁厚蕴"}],"doi":"","fpage":"276","id":"e1e33899-3378-424c-8f0a-d1570878385a","issue":"3","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"b2ee76a7-33e0-456f-94fb-6e4d365c5912","keyword":"","originalKeyword":""}],"language":"zh","publisherId":"gncl200003018","title":"纳米GaAs-SiO2镶嵌复合薄膜的发光特性","volume":"31","year":"2000"},{"abstractinfo":"为研究加载路径(内压力和轴向补料的匹配关系)对扭力内高压成形的影响,通过数值模拟和试验研究的方法,研究了不同加载路径对局部截面壁分布和管件成形精度的影响规律.研究发现:当补料初始压力过低时,在端部区域起皱;当补料初始压力过高时,补料全部集中在端部区域;当补料量过小时,壁改善不明显;补料量过大时,端部区域起皱.研究结果表明:初始压力为30 MPa,补料量15 mm时为合理加载路径,此时内高压成形件壁减薄较小,成形精度较高.","authors":[{"authorName":"张伟玮","id":"8115212b-00fe-4144-b3c2-b14b78a1d406","originalAuthorName":"张伟玮"},{"authorName":"韩聪","id":"20684984-d693-419b-af5c-df47f982d919","originalAuthorName":"韩聪"},{"authorName":"苑世剑","id":"e35e01e6-8d96-47c5-b779-efc44907c987","originalAuthorName":"苑世剑"},{"authorName":"曹伟","id":"dbb5faf1-db7e-40db-a4bf-8b4303531a4a","originalAuthorName":"曹伟"},{"authorName":"丁勇","id":"19e78087-5e2f-4b2a-bf21-59b0bd75ef25","originalAuthorName":"丁勇"},{"authorName":"赵福全","id":"bf851ba8-9302-41bc-a90d-b7e151e91022","originalAuthorName":"赵福全"}],"doi":"","fpage":"1","id":"598a7ecb-48fb-477e-90e3-a79209f99c2f","issue":"4","journal":{"abbrevTitle":"CLKXYGY","coverImgSrc":"journal/img/cover/CLKXYGY.jpg","id":"14","issnPpub":"1005-0299","publisherId":"CLKXYGY","title":"材料科学与工艺"},"keywords":[{"id":"21156c86-0141-4a71-9840-41486be2aa11","keyword":"加载路径","originalKeyword":"加载路径"},{"id":"8ff4d95c-0b59-4e8c-b15d-e402d585d70d","keyword":"减薄率","originalKeyword":"减薄率"},{"id":"c627315d-7e05-403a-9d60-672e2bb61b1e","keyword":"成形精度","originalKeyword":"成形精度"},{"id":"fdcecf06-6552-4a06-a5fb-abbd5d3a0193","keyword":"内高压成形","originalKeyword":"内高压成形"},{"id":"ab2616d9-8372-4c55-bed8-064a516e702f","keyword":"扭力","originalKeyword":"扭力梁"}],"language":"zh","publisherId":"clkxygy201204001","title":"加载路径对扭力内高压成形壁分布和精度的影响","volume":"20","year":"2012"},{"abstractinfo":"随着功能梯度的跨高比从小()变到大(薄),的变形受到剪切变形的影响就会从大变到小.为了准确分析功能梯度的变形,跨高比小的采用Timoshenko模型,而跨高比大的薄采用Euler-Bernoulli模型.采用这两种模型进行功能梯度自由振动的有限元计算,分析单元刚度矩阵、质量矩阵和模态阵型等存在的差异.通过数值算例,研究了这两种模型的差异对模态应变能法的损伤识别指标的影响.对于,Timoshenko模型的损伤指标优于Euler-Bernoulli模型;对于很薄的(例如,l/h=25时的薄),Euler-Bernoulli模型的损伤指标优于Timoshenko模型.","authors":[{"authorName":"岳世燕","id":"850ed8f3-8107-46dc-ab00-a5c3e752a86e","originalAuthorName":"岳世燕"},{"authorName":"杨真真","id":"13d89100-01dd-467e-a230-6a8f7d965719","originalAuthorName":"杨真真"},{"authorName":"谢峰","id":"d8b17c64-6721-4fec-8733-906b818c886a","originalAuthorName":"谢峰"},{"authorName":"黄立新","id":"aeeb5c1b-c307-4acf-a991-a74aa315cde7","originalAuthorName":"黄立新"}],"doi":"","fpage":"38","id":"953b5b8a-7d88-4bc5-beb3-4693e5c5d61a","issue":"2","journal":{"abbrevTitle":"BLGFHCL","coverImgSrc":"journal/img/cover/BLGFHCL.jpg","id":"6","issnPpub":"1003-0999","publisherId":"BLGFHCL","title":"玻璃钢/复合材料"},"keywords":[{"id":"9008276c-f829-4584-a97a-3c43c3979524","keyword":"功能梯度材料","originalKeyword":"功能梯度材料"},{"id":"214c7c07-deb2-4fb0-a62a-b383e440b012","keyword":"Euler-Bernoulli模型","originalKeyword":"Euler-Bernoulli梁模型"},{"id":"403471ea-15ed-492b-b95b-9d4ce10cc99e","keyword":"Timoshenko模型","originalKeyword":"Timoshenko梁模型"},{"id":"d5f53043-fd16-4b3e-882a-4346aec1ef15","keyword":"模态应变能","originalKeyword":"模态应变能"},{"id":"485091e3-75fa-4196-9b35-2a86c932c06a","keyword":"损伤识别","originalKeyword":"损伤识别"}],"language":"zh","publisherId":"blgfhcl201702007","title":"基于模态应变能法功能梯度Euler-Bernoulli和Timoshenko模型对损伤识别的影响分析","volume":"","year":"2017"},{"abstractinfo":"FRP型材拼装箱是由FRP拉挤型材空心板通过三向连接件、骨状挂钩等销接构件拼装而成的箱,具有重量轻、耐腐蚀性能好、施工速度快等突出优点,适用于小跨径公路桥及人行桥.本文采用层合材料壳体单元建立了FRP型材拼装箱的有限元模型,对单调静力荷载下箱的变形和应力等受力性能进行了研究,并与试验结果进行了对比.在此基础上,开展了11片箱的有限元参数分析,重点考察了FRP纤维铺层、箱顶、底板宽度以及型材板高度等因素对箱跨中挠度和应力的影响.研究表明,FRP型材拼装箱的截面尺寸主要由刚度控制,箱具有较大的强度储备;箱的顶、底板宽度、型材板壁和纵隔板、壁板高度等因素对箱的刚度或应力的影响较大,而纤维铺层对箱结构刚度的影响较小.","authors":[{"authorName":"葛畅","id":"65d0ad37-195c-4573-9c9e-f3a119a05272","originalAuthorName":"葛畅"},{"authorName":"薛伟辰","id":"8418523d-c78d-4daa-b455-d28dff9fee6d","originalAuthorName":"薛伟辰"}],"doi":"10.3969/j.issn.1003-0999.2009.01.018","fpage":"68","id":"be2efc28-0e97-4dba-b000-60b5e5bc81d1","issue":"1","journal":{"abbrevTitle":"BLGFHCL","coverImgSrc":"journal/img/cover/BLGFHCL.jpg","id":"6","issnPpub":"1003-0999","publisherId":"BLGFHCL","title":"玻璃钢/复合材料"},"keywords":[{"id":"eaea5da1-d0a8-40b9-85bf-aa271d697f41","keyword":"FRP拉挤型材","originalKeyword":"FRP拉挤型材"},{"id":"110e0e18-8800-4859-bba7-dbc6e4f67671","keyword":"拼装箱","originalKeyword":"拼装箱梁"},{"id":"733e89c4-7446-46a2-b0cc-737c3b913ed4","keyword":"有限元分析","originalKeyword":"有限元分析"},{"id":"cb6ff7bc-2eba-45cf-af6d-dcfcee88f057","keyword":"受力性能","originalKeyword":"受力性能"}],"language":"zh","publisherId":"blgfhcl200901018","title":"FRP型材拼装箱的受力性能研究","volume":"","year":"2009"},{"abstractinfo":"本文介绍了φ1200RPM管弯曲试验以及针对RPM管在工程应用中如何控制其弯曲变形进行了探讨.","authors":[{"authorName":"周仕刚","id":"ef0e0af5-3608-4e35-94e9-56ada439fd3f","originalAuthorName":"周仕刚"},{"authorName":"沈星万","id":"af4a4eef-138a-4d9e-a4e2-a899e3ef53d7","originalAuthorName":"沈星万"},{"authorName":"高永飞","id":"d95025bf-0ccd-4558-86a1-ddd5081ca799","originalAuthorName":"高永飞"},{"authorName":"薛元德","id":"5d1b5804-c116-401a-949d-d8090dd1667b","originalAuthorName":"薛元德"},{"authorName":"沈碧霞","id":"dbfd76bf-ad83-4894-8440-bb1cd3073b6b","originalAuthorName":"沈碧霞"}],"doi":"10.3969/j.issn.1003-0999.2001.04.002","fpage":"6","id":"8aa9a3bf-8770-44f6-9fa0-0da468f3f16c","issue":"4","journal":{"abbrevTitle":"BLGFHCL","coverImgSrc":"journal/img/cover/BLGFHCL.jpg","id":"6","issnPpub":"1003-0999","publisherId":"BLGFHCL","title":"玻璃钢/复合材料"},"keywords":[{"id":"361621c7-8baf-40d0-a2aa-b7e89d23a500","keyword":"RPM管弯曲应变控制","originalKeyword":"RPM管梁弯曲应变控制"}],"language":"zh","publisherId":"blgfhcl200104002","title":"RPM管弯曲试验及其弯曲应变的工程控制","volume":"","year":"2001"},{"abstractinfo":"考虑内部热传导,研究了格栅夹层一侧受热后的弯曲变形.认为变形后夹层结构中间腹板无弯曲.利用格栅夹层结构上的周期性,通过胞元结构的内力平衡方程和变形协调关系,得到了胞元两端内力和位移的关系.引入传递矩阵,建立了夹层内力和变形随温度变化的表达式.应用所建立的模型计算了悬臂格栅夹层在其上表面受热后的变形.在格栅夹层包含的胞元数量较多、腹板高度较小且厚度与表板厚度相近的情况下,由本文模型计算得到的挠度结果与有限元结果吻合较好.","authors":[{"authorName":"张锐","id":"c6c3af1d-19b4-4729-942f-34c30bb9e75c","originalAuthorName":"张锐"},{"authorName":"尚新春","id":"69755ca9-4b6b-4100-a234-744bfc229840","originalAuthorName":"尚新春"}],"doi":"","fpage":"1558","id":"86e647d2-0f7e-4323-95e0-0fa2e791822a","issue":"6","journal":{"abbrevTitle":"FHCLXB","coverImgSrc":"journal/img/cover/FHCLXB.jpg","id":"26","issnPpub":"1000-3851","publisherId":"FHCLXB","title":"复合材料学报"},"keywords":[{"id":"a72b255f-f9e8-4f4d-a7b4-f5524735c6a1","keyword":"格栅夹层结构","originalKeyword":"格栅夹层结构"},{"id":"7e7cd176-601e-43e8-ac15-eb4aa10f83df","keyword":"热弯曲","originalKeyword":"热弯曲"},{"id":"e90c6179-a561-4b15-843b-e5468d92a3c2","keyword":"变形","originalKeyword":"变形"},{"id":"fc685ed2-aecd-46ba-991e-b227b546ec7d","keyword":"胞元结构分析","originalKeyword":"胞元结构分析"},{"id":"a50b9198-c7f6-4bc3-9dbd-d1472a0e4905","keyword":"传递矩阵","originalKeyword":"传递矩阵"}],"language":"zh","publisherId":"fhclxb201406024","title":"格栅夹层的热弯曲变形","volume":"31","year":"2014"},{"abstractinfo":"提出一种基于Layerwise层合理论的复合阻尼结构单元用于计算嵌入多阻尼层的复合阻尼结构.通过与NASTRAN软件的计算结果进行对比,证明该单元满足层间位移、应力连续条件并避免了剪切自锁,并且具有单元数量和节点数量少、计算精度高的优点.","authors":[{"authorName":"张醒","id":"ff0c1c77-1f73-430f-80c9-7ac548963af2","originalAuthorName":"张醒"},{"authorName":"徐超","id":"9f3a9025-a671-4ef8-947a-785c9cf15615","originalAuthorName":"徐超"},{"authorName":"李莉","id":"892ad297-23ff-445b-9a38-6dec3ad8295d","originalAuthorName":"李莉"},{"authorName":"游少雄","id":"c77c795d-009f-4463-bb96-c3c060a436d4","originalAuthorName":"游少雄"}],"doi":"10.3969/j.issn.1007-2330.2007.06.004","fpage":"11","id":"664c6174-9e05-43e3-8f6a-f6c84c0aa95b","issue":"6","journal":{"abbrevTitle":"YHCLGY","coverImgSrc":"journal/img/cover/YHCLGY.jpg","id":"77","issnPpub":"1007-2330","publisherId":"YHCLGY","title":"宇航材料工艺 "},"keywords":[{"id":"a5779117-e732-4c40-bb8c-e607ebce7bba","keyword":"复合材料","originalKeyword":"复合材料"},{"id":"830a5808-ca57-4344-a395-516126b10ce6","keyword":"有限元","originalKeyword":"有限元"},{"id":"f38e2ee2-5889-4df6-b7be-a335aa0452e1","keyword":"层合理论","originalKeyword":"层合理论"}],"language":"zh","publisherId":"yhclgy200706004","title":"复合阻尼结构动力特性分析","volume":"37","year":"2007"},{"abstractinfo":"用金相、扫描电镜等分析方法,对开裂的客车纵进行了分析.结果表明,纵钢材冶金质量差,钢中存在较多的非金属夹杂物,降低了钢的力学性能;纵钢板外侧表面遭受外来敲击造成的条状凹陷伤痕,钢板热轧工艺不当,表层存在大块氧化夹杂物及微裂纹等热轧工艺缺陷,是导致其发生纵向开裂的主要原因.","authors":[{"authorName":"陈康敏","id":"315cd936-0248-4241-8af6-eaa160b1490d","originalAuthorName":"陈康敏"},{"authorName":"曹芬","id":"44330ccf-5d59-45e5-b0bf-f47675b016f4","originalAuthorName":"曹芬"},{"authorName":"潘励","id":"ebf9d54e-7ead-4be7-861c-0cb720b469af","originalAuthorName":"潘励"}],"doi":"10.3969/j.issn.1000-3738.2003.07.017","fpage":"52","id":"c265e335-73f2-4544-a7ae-510b445b7be8","issue":"7","journal":{"abbrevTitle":"JXGCCL","coverImgSrc":"journal/img/cover/JXGCCL.jpg","id":"45","issnPpub":"1000-3738","publisherId":"JXGCCL","title":"机械工程材料"},"keywords":[{"id":"00cf1b2a-d853-4e0f-af81-b45c7b7e32b2","keyword":"纵","originalKeyword":"纵梁"},{"id":"03365412-efd5-4ccd-9259-278c0956b3b0","keyword":"非金属夹杂物","originalKeyword":"非金属夹杂物"},{"id":"da656628-b850-451c-9be8-c85b782bbe89","keyword":"裂纹","originalKeyword":"裂纹"},{"id":"a03fca37-e6f9-462c-96be-7191a2ce5199","keyword":"失效分析","originalKeyword":"失效分析"}],"language":"zh","publisherId":"jxgccl200307017","title":"客车纵开裂原因分析","volume":"27","year":"2003"},{"abstractinfo":"由于层压板的各向异性,载荷下结构响应和刚度特性难以确定.为了解决有限元方法在进行复合层压板的结构分析时参数确定的难题,提出了一种层压板工字的应力分析方法,并在MATLAB上编程实现,通过与理论计算值和有限元软件ANSYS分析结果进行对比,证明该方法可行,且适合于进行参数化研究设计.","authors":[{"authorName":"王亚妮","id":"54d20ff8-3fb1-4f46-85ed-050a7d42e448","originalAuthorName":"王亚妮"},{"authorName":"袁昌盛","id":"2e8553d2-8d08-4a02-8768-54c3afb6ed12","originalAuthorName":"袁昌盛"},{"authorName":"孔德拴","id":"50f94a8b-eba3-44a8-80fc-381107b50526","originalAuthorName":"孔德拴"}],"doi":"10.3969/j.issn.1004-244X.2012.04.024","fpage":"79","id":"ece10a64-3962-486a-beac-81faa094a594","issue":"4","journal":{"abbrevTitle":"BQCLKXYGC","coverImgSrc":"journal/img/cover/BQCLKXYGC.jpg","id":"4","issnPpub":"1004-244X","publisherId":"BQCLKXYGC","title":"兵器材料科学与工程 "},"keywords":[{"id":"bf7af5b5-52a3-4a6a-bd86-75be8c815d35","keyword":"复合材料","originalKeyword":"复合材料"},{"id":"469d7da3-c661-4366-a1ea-4b0e133e72ac","keyword":"工字","originalKeyword":"工字梁"},{"id":"d46fd672-c2b4-4d37-9b07-e208050f2c1d","keyword":"截面特性","originalKeyword":"截面特性"},{"id":"b98fc1bc-fbf5-4c05-8163-80bc9d8606d4","keyword":"结构分析","originalKeyword":"结构分析"}],"language":"zh","publisherId":"bqclkxygc201204024","title":"复合材料工字结构分析","volume":"35","year":"2012"},{"abstractinfo":"某公司生产的货车在运行过程中发现枕下盖板开裂.对其进行化学成分分析、力学性能和金相检验以及对断口形貌扫描电镜进行观察.结果表明,枕下盖板的化学成分和力学性能符合要求,基体金相组织为铁素体+珠光体,枕下盖板受较大交变应力的作用,裂纹沿枕下盖板材料的轧制方向开裂,为疲劳断裂.","authors":[{"authorName":"王立辉","id":"ed7f253d-6646-4820-9380-d06f9986a483","originalAuthorName":"王立辉"},{"authorName":"但启安","id":"494c5d13-3093-4545-9b0a-0d8cf55926fd","originalAuthorName":"但启安"},{"authorName":"徐巍","id":"823cc435-dce4-4283-b7f1-5381534c7dc7","originalAuthorName":"徐巍"},{"authorName":"李庆晓","id":"17f6d0ff-f3c4-4625-b99b-65cac42da6e2","originalAuthorName":"李庆晓"}],"doi":"10.13228/j.boyuan.issn1001-0777.20160094","fpage":"49","id":"67abf39a-da87-411c-9a60-c06db4f7d714","issue":"3","journal":{"abbrevTitle":"WLCS","coverImgSrc":"journal/img/cover/WLCS.jpg","id":"64","issnPpub":"1001-0777","publisherId":"WLCS","title":"物理测试"},"keywords":[{"id":"360ac94b-6f78-460b-9ef0-129e906888e6","keyword":"盖板","originalKeyword":"盖板"},{"id":"3966765b-4012-45ae-a43c-aded0788bbd8","keyword":"裂纹","originalKeyword":"裂纹"},{"id":"12a659d8-de1b-484c-9beb-5504a9dc3661","keyword":"疲劳","originalKeyword":"疲劳"}],"language":"zh","publisherId":"wlcs201703011","title":"货车枕下盖板开裂分析","volume":"35","year":"2017"}],"totalpage":468,"totalrecord":4675}