叶猛超
,
杨伟
,
苏长伟
,
周临星
,
李俊敏
,
郭俊明
电镀与涂饰
通过在NH4F+H2O的乙二醇溶液中阳极氧化铁箔,制备了纳米多孔结构的铁氧化物(Fe2O3-Fe3O4),然后在纳米多孔中电沉积镍,再经过400℃退火0.5 h,获得了镍与纳米多孔氧化铁的复合材料(Fe2O3-Fe3O4/Ni).考察了电流密度和时间对镍沉积的影响.用扫描电镜、能谱仪、X射线衍射仪表征了复合材料的表面形貌、元素组成和物相,测试了其电化学性能并与未经电沉积镍的纳米多孔氧化铁(Fe2O3-Fe3O4)比较.结果表明,氧化铁由Fe2O3和Fe3O4组成.镀镍的最佳电流密度为2.0 mA/dm2,时间30s.该纳米多孔Fe2O3-Fe3O4/Ni复合材料作为锂离子电池负极材料表现出更好的电化学性能—经过50次充放电循环后的放电比容量仍有438.3mA·h/g,而Fe2O3-Fe3O4电极的放电比容量仅为110.6mA.h/g. Fe2O3-Fe3O4/Ni电极的循环稳定性和倍率性能优异.
关键词:
铁箔
,
阳极氧化
,
电沉积镍
,
纳米多孔结构
,
锂离子电池
,
负极
,
放电容量
李昌明
,
赵灵智
,
刘志平
,
张仁元
,
李伟善
,
尹荔松
,
胡社军
稀有金属材料与工程
用电沉积方法在铜集流体上分别制备出不同厚度(2,0.5,0.25,0.12μm)的锡薄膜电极.用扫描电镜观察其表面形貌、以充放电实验比较其性能.结果表明,减小Sn薄膜厚度可改善电极的循环性能,但首次容量损失也增大.0.5μm厚的Sn薄膜具有最高的放电容量和较好的循环稳定性;其首次放电比容量为749 mAh/g,40次循环时放电比容量仍保持578 mAh/g.
关键词:
锡薄膜
,
厚度
,
锂离子电池
,
负极材料
吴显明
,
陈上
,
麦发任
,
赵俊海
,
何海亮
人工晶体学报
采用湿化学法对LiMn2O4进行TiO2及LiTi2 (PO4)3表面包覆.采用X射线衍射仪、扫描电镜、恒电流充放电等技术对合成产物进行物相、形貌和电化学分析.结果表明:TiO2及LiTi2(PO4)3包覆LiMn2O4与未包覆LiMn2O4具有相似的X射线衍射结果.室温和55℃以0.5C倍率充放电循环20次后,TiO2包覆LiMn2O4的容量保持率分别为98.2%和95.3%,LiTi2(PO4)3包覆LiMn2O4的容量保持率分别为99.1%和96.8%,高于未包覆LiMn2O4的94.6%和92.2%.表面包覆LiTi2(PO4)3后LiMn2O4的锂离子扩散系数变化不大,但包覆TiO2后的锂离子扩散系数略有下降.
关键词:
LiMn2O4
,
锂离子电池
,
包覆
,
容量保持率
,
扩散系数
欧阳曦
,
陈珍华
,
郑雪琴
冶金分析
doi:10.13228/j.issn.1000-7571.2014.11.008
在锂离子三元正极材料LiNi1-x-y CoxMnyO2中,钠离子会占据锂离子的位置,钠离子的存在会降低材料的克容量,因此需要严格控制材料中钠含量.在研究采用电感耦合等离子体原子发射光谱法(ICP-AES)测定锂离子三元正极材料LiNi1-xyCoxMnyO2中的杂质元素钠含量的条件包括样品的溶解方法、测定介质盐酸的浓度、称样量、仪器参数基础上、建立了锂离子三元正极材料LiNi1-x-yCoxMnyO2中钠的测定方法.方法无需进行基体匹配、添加消电离剂等烦琐操作步骤就能得到准确、稳定的测量结果.方法的回收率在97.8%~103.6%之间,样品分析结果相对标准偏差小于2.5%,完全能够满足三元正极材料分析的要求.
关键词:
三元正极材料
,
电感耦合等离子体原子发射光谱法(ICP-AES)
,
钠
,
锂离子电池
张悦
,
汪广进
,
孙爽
,
潘牧
材料导报
聚苯胺是目前研究最为广泛的导电高分子材料之一.综述了不同纳米结构聚苯胺及聚苯胺纳米复合材料的合成方法,并着重介绍了聚苯胺纳米复合材料在超级电容器、电化学生物传感器、锂离子电池等领域应用的最新进展,最后展望了聚苯胺纳米复合材料的应用前景.
关键词:
聚苯胺
,
纳米结构
,
纳米复合材料
,
超级电容器
,
生物传感器
,
锂离子电池
李卫
,
田文怀
,
其鲁
中国有色金属学报
采用液相共沉淀法制备球形掺镁高镍三元材料前驱体,结合高温固相法制备了氧化硼包覆高镍三元材料LiMg0.03(Ni0.77Co0.1 Mn0.1)O2?B2O3,对样品物理性能、电化学性能及安全稳定性进行分析测定,并对性能改善的机理进行分析。结果表明:通过Mg元素体相掺杂和B2O3表面包覆制备的球形高镍三元材料LiMg0.03(Ni0.77Co0.1 Mn 0.1)O 2?B 2 O 3具有良好的电化学性能和物理性能,对锂负极初始放电容量达到181 mA?h/g,对碳负极300次循环后,放电容量保持率达到92%,压实密度达到3.9 g/cm3。同时,LiMg0.03(Ni0.77Co0.1 Mn0.1)O2?B2O3具有良好的热稳定性和抗过充电的能力,在充电态下热分解温度比未掺杂和未包覆的样品提升12℃。
关键词:
锂离子电池
,
正极材料
,
三元材料
,
掺杂
,
表面包覆