卿永长
,
杨志炜
,
鲜俊
,
许进
,
闫茂成
,
吴堂清
,
于长坤
,
于利宝
,
孙成
金属学报
doi:10.11900/0412.1961.2016.00030
采用微生物分析方法研究了交流电(均方根电流密度50 A/m2, 频率50 Hz)对土壤浸出液中硫酸盐还原菌(sulfate reducing bacteria, SRB)的生理影响; 通过开路电位、动电位极化曲线、电化学阻抗谱等方法研究了交流电和微生物共同作用对Q235钢的电化学行为的影响; 利用SEM观测了试样表面腐蚀产物和腐蚀微观形貌. 结果表明, 均方根电流密度为50 A/m2, 频率为50 Hz的正弦交流电对SRB的生理未造成很大影响, 但交流电的交变电场降低了微生物膜的吸附性, 促进了微生物膜的脱附. 实验前期, 活性生物膜抑制金属腐蚀, 实验后期, 微生物代谢产物促进金属腐蚀. 金属在交流电作用下, 由于整流效应、交变电场作用以及点蚀的自催化效应等, 腐蚀速率加快, 腐蚀产物疏松.
关键词:
交流腐蚀
,
硫酸盐还原菌(SRB)
,
电化学
,
微生物腐蚀
,
整流效应
夏进
,
徐大可
,
南黎
,
刘宏芳
,
李绮
,
杨柯
材料研究学报
doi:10.11901/1005.3093.2015.188
人类认知由微生物导致的金属腐蚀现象距今已有一个多世纪的历史.最近20年,微生物腐蚀(Microbiologically influenced corrosion,MIC)已成为金属腐蚀的一个研究热点.因为缺乏对MIC机理的深入了解和认识,人们甚至认为MIC是腐蚀领域中的一个“谜”.因此,迫切需要了解MIC的发生机理.最新的研究结果表明,金属的微生物腐蚀在本质上是一个生物电化学过程.在微生物与金属并存的环境中,当电子供体(如碳源)不存在或消耗掉之后,微生物用金属代替碳源获取电子,导致金属发生微生物腐蚀.另外一种腐蚀机理是,微生物的代谢产物(比如有机酸)导致金属腐蚀.腐蚀是一个能量释放的反应过程,微生物通过腐蚀金属得到维持其生命所必需的能量.目前,电化学方法已应用于微生物金属腐蚀研究,学者们提出了诸如“阴极去极化”等经典理论.但单纯从电化学角度研究微生物腐蚀金属可能得到一些片面的结论.随着对这一领域研究的不断深入人们认识到必须结合生物能量学以及生物电化学方面的知识,以更好地理解微生物影响金属腐蚀的进程.本文总结这方面的最新研究进展,并着重介绍“生物催化阴极还原”理论(Biocatalytic cathodic sulfate reduction,BCSR)和“电化学微生物腐蚀”理论(Electrical microbial infuenced corrosion,EMIC)等最新的金属微生物腐蚀机理.本文主要从生物能量学和生物电化学方面介绍金属微生物腐蚀机理研究,这是目前国际上一种新的研究方法和思路.BCSR就是依据这一思路解释了微生物为什么和怎样腐蚀金属这一MIC研究领域中的这一难题.
关键词:
材料失效与保护
,
微生物腐蚀
,
硫酸盐还原菌
,
生物膜
,
生物能量学
,
细胞外电子传递
卿永长
,
杨志炜
,
鲜俊
,
许进
,
闫茂成
,
吴堂清
,
于长坤
,
于利宝
,
孙成
金属学报
doi:10.11900/0412.1961.2016.00030
采用微生物分析方法研究了交流电(均方根电流密度50 A/m2,频率50 Hz)对土壤浸出液中硫酸盐还原菌(sulfate re-ducing bacteria,SRB)的生理影响;通过开路电位、动电位极化曲线、电化学阻抗谱等方法研究了交流电和微生物共同作用对Q235钢的电化学行为的影响;利用SEM观测了试样表面腐蚀产物和腐蚀微观形貌.结果表明,均方根电流密度为50A/m2,频率为50 Hz的正弦交流电对SRB的生理未造成很大影响,但交流电的交变电场降低了微生物膜的吸附性,促进了微生物膜的脱附.实验前期,活性生物膜抑制金属腐蚀,实验后期,微生物代谢产物促进金属腐蚀.金属在交流电作用下,由于整流效应、交变电场作用以及点蚀的自催化效应等,腐蚀速率加快,腐蚀产物疏松.
关键词:
交流腐蚀
,
硫酸盐还原菌(SRB)
,
电化学
,
微生物腐蚀
,
整流效应