董应虎
,
张英建
,
魏晓晓
,
周贤良
,
叶志国
,
周浪
材料热处理学报
研究了不同的控轧工艺参数对非调质钢组织结构的影响规律,并在非调质钢零件不同部位采用强化控冷技术进行锻后冷却,得到了优化的非调质钢控轧控冷技术。结果表明:非调质钢转向节零件局部强化控冷技术能显著提高零件局部的综合力学性能;在1273~1373K下,随着应变量ε在0.22~1.61内增加,实验钢原奥氏体晶粒从26~12μm逐渐细化,在该条件下峰值应变约为0.3;在1173~1473K范围内随着变形温度的降低,变形抗力增大,峰值应变也随之增大,材料原奥氏体晶粒尺寸在20~11μm内逐渐减小;在增大锻压比和局部风冷两种工艺配合下,F40MnV钢可获得较好的综合力学性能。
关键词:
非调质钢
,
力学性能
,
控轧控冷
,
组织
C.Y. You
材料科学技术(英文)
The Dy capping layer was deposited at different temperatures on the Nd-Fe-B thin films to investigate the mechanism of the coercivity enhancement through the Dy surface diffusion. The highest coercivity of 2005 kA/m (25.2 kOe) was obtained at the Dy deposition temperature of 460°C, which was significantly higher than the value of 1297 kA/m (16.3 kOe) without Dy capping layer. By performing the transmission electron microscopy (TEM) analysis, it was found that some of the grain boundaries were enriched with Nd element, which could be partly ascribed to the promotion by the Dy surface diffusion. In comparison to the evolution of the spin reorientation temperature of Nd2Fe14B phase after the deposition of the Dy capping layer, it is concluded that structural modification plays a significant role in the coercivity enhancement due to the Dy surface diffusion.
关键词:
Nd-Fe-B thin film
C.Y. You
材料科学技术(英文)
The Dy capping layer was deposited at different temperatures on the Nd-Fe-B thin films to investigate the mechanism of the coercivity enhancement through the Dy surface diffusion. The highest coercivity of 2005 kA/m (25.2 kOe) was obtained at the Dy deposition temperature of 460°C, which was significantly higher than the value of 1297 kA/m (16.3 kOe) without Dy capping layer. By performing the transmission electron microscopy (TEM) analysis, it was found that some of the grain boundaries were enriched with Nd element, which could be partly ascribed to the promotion by the Dy surface diffusion. In comparison to the evolution of the spin reorientation temperature of Nd2Fe14B phase after the deposition of the Dy capping layer, it is concluded that structural modification plays a significant role in the coercivity enhancement due to the Dy surface diffusion.
关键词:
Nd-Fe-B thin film