欢迎登录材料期刊网

材料期刊网

高级检索

  • 论文(1)
  • 图书()
  • 专利()
  • 新闻()

BP神经网络在连铸板坯质量在线诊断中的应用

郭贤利 , 彭世恒 , 仇圣桃

钢铁研究学报

为了更好地应用BP神经网络对连铸板坯质量进行在线诊断,基于连铸生产特点,利用采集的过程数据建立了符合生产实际的均一化函数.通过分析BP神经网络中各参数对网络性能及诊断准确率的影响,对BP神经网络的结构及学习算法进行修正,使该网络有选择和有区分地学习铸坯质量知识.结合某钢厂连铸现场数据,以黏结为例,建立了6种网络模型,对各模型算法进行了比较测试.结果表明:采用自定义函数均一化样本或采用提出的差异性算法训练神经网络,均可明显提高诊断准确率;采用选择性算法可确保诊断准确率不变的同时,提高学习速度;修正的算法更能很好地符合连铸生产实际.

关键词: 连铸板坯 , 在线诊断 , BP神经网络 , 修正算法

出版年份

刊物分类

相关作者

相关热词