周军
,
李中奎
中国材料进展
doi:10.7502/j.issn.1674-3962.2014.09.03
轻水反应堆(LWR)是国际上多数核电站采用的堆型。锆具有良好的加工性能,优良的机械性能,较高的熔点、优异的耐蚀性能及核性能,被用作燃料包壳和堆芯结构材料,是发展核电及核动力舰船不可替代的关键结构材料和功能材料。随着核电技术的发展,对堆芯包壳材料性能提出了更高的要求,综述了核用锆合金包壳材料的国内外研究和使用现状以及新型SiC包壳材料的研发现状。总体来说,锆合金在未来几十年内仍是核反应堆包壳材料的主要用材,开展新合金的研发,不断提升锆合金的性能是世界各国研究者共同的目标;适时加大投入力度,强化条件建设,就能加快具有国内自主知识产权锆合金的产业化步伐,可最终实现核电及核动力用锆合金材料的自主化;SiC 材料具有更高的熔点、更好的耐腐蚀性能,是一种极具应用潜力的材料,有可能成为第4代核反应堆的包壳材料,但还需投入大量研究。
关键词:
核反应堆
,
锆合金
,
SiC
,
包壳
王驰
,
冉广
,
雷鹏辉
,
陈芙梁
材料热处理学报
在20 ~600℃范围内对国产SA-182F304钢进行了温度效应下的拉伸行为研究.采用光学显微镜、透射电镜、扫描电子显微镜、XRD以及显微硬度仪对原始态和拉伸断裂试样进行了微观组织与微观化学分析与表征.试验结果表明,在晶粒度为5.5级的钢基体中分布着粗系、moy级别为1.5级的B类和细系、moy级别为1.0级的D类宏观夹杂物,分别占0.0317%和0.0158%,这些夹杂物容易出现在拉伸断口的韧窝处.钢基体中分布着大量平行与缠结的位错,析出相主要为FCC结构的Ti(Cr,Fe,Mn)2.屈服强度、拉伸强度和伸长率随着温度的升高而降低,而断面收缩率却保持在80%左右,表现出良好的塑性,断口以韧窝为主.拉伸导致了钢基体的显微硬度显著提高,比原始态钢的相应值提高了约一倍.显微硬度的增加来源于钢基体中的位错增殖,而非相变的结果,拉伸并没有导致奥氏体向马氏体发生明显转变.随着拉伸温度升高,奥氏体晶粒的回复加剧,位错密度逐渐降低,纤维状的组织明显降低.
关键词:
SA-182 F304钢
,
拉伸性能
,
微观组织
,
核反应堆