A. G. Liu
,
X.F. Wang
,
L.P. Wang
,
S. Y. Wang
,
B. Y. Tang and P.K. Chu 1) Advanced Welding Production Technology National Key Laboratory
,
HIT
,
Harbin 150001
,
China 2) Department of Physics and Material Science
,
City University of Hong Kong
,
83 Tat Chee Avenue
,
Kowloon
,
Hong Kang
,
China
金属学报(英文版)
Plasma immersion ion implantation (PIII), unrestricted by sight-light process, is considered a proper method for inner surface strengthening. Two-dimensional simulation oj inner surface PIII process of cylindrical bores were carried out in this paper using cold plasma fluid model, and influence of the bore's dimension on impact energy, retained dose and uniformity of inner surface were investigated.
关键词:
plasma immersion ion implantation
,
null
,
null
,
null
X.B. Tian
,
X.F. Wang
,
A.G. Liu
,
L.P. Wang
,
S. Y. Wang
,
B. Y. Tang and P. K. Chu 1)Advanced Welding Production & Technology National Key Laboratory
,
Harbin Institute of Technology
,
Harbin 150001
,
China 2)Department of Physics & Materials Science
,
City University of Hong Kong
,
China
金属学报(英文版)
The research on plasma immersion ion implantation has been conducted for a little over ten years. Much is needed to investigate including processing technlogy, plasma sheath dynamics, interaction of plasma and surface, etc. Of the processing methods elavated temperature technique is usually used in PIII to produce a thick modified layer by means of the thermal diffusion. Meanwhile plasma ion heating is more recently developed by Ronghua Wei et al[1]. Therefore the temeperature is a critical parameter in plasma ion processing. In this paper we present the theoretical model and analysize the effect of imlantation voltage, plasma density, ion mass,etc on the temperature rise.
关键词:
plasma immersion ion implantation
,
null
,
null
李杨
,
王亮
材料导报
离子氮化具有工件变形小、渗速快、节能环保等优点,能有效提高金属零部件的表面硬度、耐磨损和耐腐蚀等性能.然而受气体放电特性和电场效应的影响,工件形状对表面温度的均匀性影响很大,出现表面打弧、边缘效应和空心阴极效应等问题.为了克服传统直流离子渗氮的缺点,近年来出现了一些射频离子氮化、等离子体浸没离子注入、活性屏渗氮以及空心阴极氮化等新技术.
关键词:
离子渗氮
,
活性屏渗氮
,
等离子体浸没离子注入
,
空心阴极放电