{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"为解决大型空心电抗器线圈在绕制和固化过程中发生流胶而影响产品质量的问题,在前期研究不同促进剂种类和用量对浸渍树脂性能影响的基础上,研究了3种固化体系浸渍树脂的使用温度、时间对其粘度、凝胶时间的影响,结合红外和DSC对浸渍树脂的固化工艺性能进行了研究,并通过制作线圈模型,测定了不同二甲基苄胺(BDMA)用量的固化体系线圈模型固化过程的树脂流失量和固化后线圈内部的树脂分布均匀性。结果表明:BDMA固化体系使用工艺性能明显优于2,4-EMI、DMP-30固化体系。当BDMA用量为0.8%时,对线圈树脂流失量和分布均匀性的改善效果最好,固化后的线圈上、中、下树脂含量差别较小,上、下树脂含量的比值为0.9789,树脂流失量仅为0.47%。","authors":[{"authorName":"黄孙息","id":"4547d85d-6b10-4809-bbc8-c9ad6c581979","originalAuthorName":"黄孙息"},{"authorName":"王轶","id":"a0f1c0fe-7579-4890-8c58-a808d025d5eb","originalAuthorName":"王轶"},{"authorName":"梁亚东","id":"cb92d15d-8791-442d-a60b-a6341c010caf","originalAuthorName":"梁亚东"},{"authorName":"冯羽风","id":"523af5d8-7af8-45d8-a645-de502b1547ab","originalAuthorName":"冯羽风"}],"doi":"","fpage":"33","id":"7a977739-4477-4840-9268-7538a0728ebd","issue":"5","journal":{"abbrevTitle":"JYCL","coverImgSrc":"journal/img/cover/JYCL.jpg","id":"50","issnPpub":"1009-9239","publisherId":"JYCL","title":"绝缘材料"},"keywords":[{"id":"4a683e02-a550-4be3-8581-89102717dc07","keyword":"促进剂","originalKeyword":"促进剂"},{"id":"1cdd689d-1797-4807-bdbb-20f199afc65b","keyword":"浸渍树脂","originalKeyword":"浸渍树脂"},{"id":"f5237165-7c8c-42c3-8c9a-380390e3f8e1","keyword":"线圈模型","originalKeyword":"线圈模型"},{"id":"82f2b573-32a2-4336-a5c5-3dffc8c882e3","keyword":"树脂含量","originalKeyword":"树脂含量"}],"language":"zh","publisherId":"jycltx201305009","title":"促进剂种类和用量对电抗器用浸渍树脂固化工艺性能的影响","volume":"","year":"2013"},{"abstractinfo":"以环氧树脂、酸酐、稀释剂为主要原料制备了一种无溶剂环氧绝缘浸渍树脂.对浸渍树脂的常规性能和热老化性能进行了测试,并对其进行环境试验和应用试验.结果表明:制备的无溶剂环氧绝缘浸渍树脂具有良好的耐热性能、力学性能、电气性能及优异的耐候性,适用于电动汽车及混合动力汽车电机的绝缘.","authors":[{"authorName":"黄孙息","id":"722c7a8f-9914-403f-9725-83af04fa7820","originalAuthorName":"黄孙息"},{"authorName":"梁亚东","id":"acd2314d-6ba0-4805-9dde-06df7e8d19e3","originalAuthorName":"梁亚东"},{"authorName":"冯羽风","id":"3f1e80a6-4bbb-4019-82a6-78eb864ffb69","originalAuthorName":"冯羽风"},{"authorName":"马纪翔","id":"6b25084f-bc6c-4f07-9282-b736af10fb55","originalAuthorName":"马纪翔"}],"doi":"","fpage":"32","id":"bd6d27a5-f094-437b-a3b3-83bf56621717","issue":"6","journal":{"abbrevTitle":"JYCL","coverImgSrc":"journal/img/cover/JYCL.jpg","id":"50","issnPpub":"1009-9239","publisherId":"JYCL","title":"绝缘材料"},"keywords":[{"id":"7e66496a-95db-4711-8f7a-ef5dd94bbdde","keyword":"浸渍树脂","originalKeyword":"浸渍树脂"},{"id":"abc234ae-3986-4e13-a881-004bad264f9b","keyword":"环氧树脂","originalKeyword":"环氧树脂"},{"id":"73a16604-2639-4996-b624-530e59827d9e","keyword":"混合动力","originalKeyword":"混合动力"},{"id":"5f4b11ff-839b-42e0-a98e-1b1bb1b1177e","keyword":"电机绝缘","originalKeyword":"电机绝缘"}],"language":"zh","publisherId":"jycltx201406008","title":"混合动力汽车用无溶剂环氧绝缘浸渍树脂的研制","volume":"47","year":"2014"},{"abstractinfo":"以3,3′,4,4′-联苯四羧酸二酐(BPDA)、1,3-双(4-氨基苯氧基)苯(TPER)、3,4′-二氨基二苯醚(3,4′-ODA)、邻苯二甲酸酐(PA)为原料制备了一种共聚封端热塑性聚酰亚胺(TPI)薄膜,采用DSC、TG、万能拉伸试验机、DMA等对其性能进行测试和分析。结果表明:共聚封端TPI薄膜的加工性能提高,同时保持了较高的热稳定性和较好的拉伸性能。其中加入3%PA封端剂制备的树脂综合性能最好,具有较低的熔点(328.8℃)、结晶温度(311.6℃)、损耗模量(4.1×108 Pa)和较高的玻璃化转变温度(210.1℃),采用该树脂制备的TPI薄膜综合性能最佳。","authors":[{"authorName":"陈志平","id":"e96aac4e-51d7-4343-bf30-4c426fabfbc3","originalAuthorName":"陈志平"},{"authorName":"姬亚宁","id":"52f86f2c-9488-4cdc-abd5-dfeb78378bbe","originalAuthorName":"姬亚宁"},{"authorName":"周福龙","id":"132ec1b1-dcde-4335-9af8-c6ded289abbf","originalAuthorName":"周福龙"},{"authorName":"冯羽风","id":"cd61dd85-f941-44dc-a76f-37cd965f53cb","originalAuthorName":"冯羽风"},{"authorName":"冯婷婷","id":"00b33cbf-cb64-412d-b54c-8ec521792dee","originalAuthorName":"冯婷婷"}],"doi":"10.16790/j.cnki.1009-9239.im.2016.10.008","fpage":"43","id":"d08d2784-db27-496d-ad38-0ac3f7656471","issue":"10","journal":{"abbrevTitle":"JYCL","coverImgSrc":"journal/img/cover/JYCL.jpg","id":"50","issnPpub":"1009-9239","publisherId":"JYCL","title":"绝缘材料"},"keywords":[{"id":"1a3121e3-6587-4db6-8d41-641805b60124","keyword":"热塑性聚酰亚胺薄膜","originalKeyword":"热塑性聚酰亚胺薄膜"},{"id":"17ed4014-8e2a-4f5a-b8d3-2bdef47d04b9","keyword":"共聚","originalKeyword":"共聚"},{"id":"4978eff1-f414-46c3-b09f-0e680a45cc09","keyword":"PA封端","originalKeyword":"PA封端"},{"id":"dc2039ab-a854-4cd3-8f79-bdc00e803fb5","keyword":"低熔点","originalKeyword":"低熔点"},{"id":"dece32ac-54b4-41cf-b561-4faf864a780e","keyword":"高结晶性","originalKeyword":"高结晶性"}],"language":"zh","publisherId":"jycltx201610008","title":"低熔点高结晶性热塑性聚酰亚胺薄膜的制备及性能研究","volume":"","year":"2016"},{"abstractinfo":"采用粉体复配的方式在环氧树脂固化体系中填充导热无机粉体制备了高导热环氧浇注胶,对不同种类粉体粒径及形状与环氧浇注胶的黏度、力学性能、耐热性能、导热性能等的影响进行研究.结果表明:通过大粒径的非球形粉体与小粒径的球形粉体进行复配填充,能有效降低浇注胶的黏度,同时浇注胶的冲击强度和导热性能明显提高,粉体沉降问题也得到明显改善.","authors":[{"authorName":"黄孙息","id":"8a7b4f81-4826-412c-b2cd-64ffc996c9bb","originalAuthorName":"黄孙息"},{"authorName":"冯羽风","id":"570fafd0-e4e2-4e27-8558-3eee8275cf8c","originalAuthorName":"冯羽风"},{"authorName":"唐小青","id":"7a020df4-5390-40f1-a8f5-7d68909196a4","originalAuthorName":"唐小青"},{"authorName":"钟立松","id":"03fcbb15-f0fb-44d5-8248-9a55d92fbcad","originalAuthorName":"钟立松"}],"doi":"10.16790/j.cnki.1009-9239.im.2016.06.009","fpage":"40","id":"3e0104df-5d3d-4518-8b1a-95c43efb8570","issue":"6","journal":{"abbrevTitle":"JYCL","coverImgSrc":"journal/img/cover/JYCL.jpg","id":"50","issnPpub":"1009-9239","publisherId":"JYCL","title":"绝缘材料"},"keywords":[{"id":"0c0995cb-cc57-4ae0-a7ba-572f9db817eb","keyword":"无机粉体","originalKeyword":"无机粉体"},{"id":"5b9d787b-1234-483e-905b-e1e8c28b56a5","keyword":"浇注胶","originalKeyword":"浇注胶"},{"id":"fc21b4f8-54c7-4797-80f3-1c4d2896742a","keyword":"导热","originalKeyword":"导热"},{"id":"48545451-aca7-477f-aff7-5b53e96a5869","keyword":"沉降","originalKeyword":"沉降"},{"id":"6c350537-fafe-498f-b037-165602dc47e6","keyword":"环氧","originalKeyword":"环氧"}],"language":"zh","publisherId":"jycltx201606009","title":"粉体粒径及形状对导热环氧浇注胶性能的影响研究","volume":"","year":"2016"},{"abstractinfo":"本文针对质量流量376-773kg^-2·s^-1的饱和蒸汽在温度变化范围为10-55℃流动水中形成的音速蒸汽射流凝结进行了实验研究。实验观察到了四种不同的汽羽形状,并且汽羽形状受Re影响较大。当Re与凝结驱动势减小时,最大膨胀比和汽羽喷射长度增大,其值小于蒸汽音速射流在静止水中的情况。本文给出了汽羽喷射长度实验关联式,大多数实验数据与预测值的误差小于10%。","authors":[{"authorName":"徐强","id":"0fc2aaaf-0a3d-437a-ae8c-64472a8bc6d3","originalAuthorName":"徐强"},{"authorName":"郭烈锦","id":"3e8a7b0b-0083-40f6-af79-6d469df22161","originalAuthorName":"郭烈锦"},{"authorName":"马科帅","id":"9c6113b9-3030-4d10-8e5a-431365eaa01b","originalAuthorName":"马科帅"},{"authorName":"邹遂丰","id":"b3b10718-8b79-4154-ba33-1a7db63a55df","originalAuthorName":"邹遂丰"}],"doi":"","fpage":"1896","id":"e7db7863-1bbd-433b-a1ba-804f301c1200","issue":"11","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"7d7b333d-8ae4-4862-a540-c8b26dc5f7ac","keyword":"音速射流","originalKeyword":"音速射流"},{"id":"be8aafdb-f430-42a6-aec6-0a4ae78d26db","keyword":"蒸汽凝结","originalKeyword":"蒸汽凝结"},{"id":"f2a854a2-b308-428a-be29-7a635c01f26b","keyword":"汽羽形状","originalKeyword":"汽羽形状"},{"id":"db090545-f27f-402b-b1ff-cd1d362ac75f","keyword":"无量纲喷射长度","originalKeyword":"无量纲喷射长度"}],"language":"zh","publisherId":"gcrwlxb201211016","title":"垂直管内音速蒸汽射流凝结汽羽形状研究","volume":"33","year":"2012"},{"abstractinfo":"本文对入口压力为0.20~0.50 MPa的饱和蒸汽在20~70 ℃过冷水中超音速浸没射流凝结所形成的汽羽的形状进行了实验研究.实验结果表明:根据汽羽膨胀的次数,汽羽形状主要有渐缩形、膨胀-收缩形、双膨胀-收缩形、收缩-膨胀-再收缩形和发散形五种;汽羽的穿透长度随着蒸汽入口压力的增大和过冷水温度的上升而逐渐增大;对于设计压比分别为0.318和0.113的喷嘴,汽羽的无量纲穿透长度分别在3.45~12.62和2.40~9.81之间,明显小于相同条件下音速蒸汽浸没射流凝结所形成的汽羽无量纲穿透长度.同时,在理论推导的基础上给出了计算汽羽无量纲穿透长度的实验关联式,其预测值与实验值误差小于18%.","authors":[{"authorName":"曹岩","id":"0b2e0e9a-9d9f-4ea3-88ce-18468bbf0c4e","originalAuthorName":"曹岩"},{"authorName":"邵树峰","id":"05367257-a4e5-4a7f-b2b6-df659e25ed55","originalAuthorName":"邵树峰"},{"authorName":"严俊杰","id":"bee302a3-bea0-4c3a-a8a0-f21a884c5ac5","originalAuthorName":"严俊杰"},{"authorName":"胡党辉","id":"a032fa1b-96b6-4bb0-b052-55680bd83317","originalAuthorName":"胡党辉"}],"doi":"","fpage":"619","id":"22e5a204-4b6a-45ce-b4c0-79d325ca120a","issue":"4","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"d5ca0116-adba-44aa-ad23-fc8404ff6355","keyword":"超音速","originalKeyword":"超音速"},{"id":"73f90dc2-aafa-4095-ac7b-4b0466753a4a","keyword":"蒸汽射流","originalKeyword":"蒸汽射流"},{"id":"c048127b-bc53-4ce6-8d52-5715aebfddf8","keyword":"汽羽形状","originalKeyword":"汽羽形状"},{"id":"dde7362b-b120-4f65-bcb5-31dba27b1ade","keyword":"无量纲穿透长度","originalKeyword":"无量纲穿透长度"}],"language":"zh","publisherId":"gcrwlxb200704024","title":"超音速蒸汽浸没射流凝结汽羽形状的实验研究","volume":"28","year":"2007"},{"abstractinfo":"本文针对固体火箭发动机低空羽流场的数据外推问题进行研究.应用相似方法分析发动机低空羽流场模型,整理相似准则及相似条件.简化相似模型,根据工程计算半经验方法,拟和低空羽流温度场的计算公式,计算结果与工程计算数据基本吻合,验证了相似方法的可行性.","authors":[{"authorName":"王雁鸣","id":"02ea93d0-13e1-4fb5-bea9-68154f0e35c3","originalAuthorName":"王雁鸣"},{"authorName":"谈和平","id":"15ec790b-e769-49a8-9e4d-194b5e3e0bec","originalAuthorName":"谈和平"},{"authorName":"余其铮","id":"f4be7edf-5412-4874-9715-3aa33a0ba80d","originalAuthorName":"余其铮"}],"doi":"","fpage":"856","id":"33c3df69-5ace-4d94-a05e-b7ff336a79f0","issue":"5","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"7d10bb31-f42d-42ad-b644-2c4c240f2a2a","keyword":"固体火箭发动机","originalKeyword":"固体火箭发动机"},{"id":"bdac51a5-9a8f-4ac0-8875-d81d61d6cc1a","keyword":"羽流","originalKeyword":"羽流"},{"id":"2032bfce-8a47-4c10-bc5f-bb93d588087d","keyword":"相似准则","originalKeyword":"相似准则"}],"language":"zh","publisherId":"gcrwlxb200505044","title":"固体火箭发动机低空羽流场的相似研究","volume":"26","year":"2005"},{"abstractinfo":"对PMI泡沫夹层结构整流罩冯卡门锥段成型技术进行了研究,通过对玻璃钢面板及其泡沫夹层结构性能、面板成型、泡沫热成形、泡沫拼接、玻璃钢泡沫夹层结构成型及无损检测等技术研究,确定了玻璃钢外面板、预先固化,然后与泡沫等复合组装,最后铺覆内面板,整体进罐固化的成型工艺.结果表明,玻璃钢面板纵、横向拉伸强度为602、593MPa,模量为26.0、27.2 GPa,满足设计强度≥350MPa、模量≥25GPa的要求;玻璃钢/PMI泡沫夹层结构泡沫密度为(110±10)kg/m3,厚度28mm,纵、横向侧压强度为32.9、30.5MPa、模量为2.31、2.38GPa,满足设计指标侧压强度≥25MPa、模量≥2.0GPa的要求,采用玻璃钢/PMI 泡沫夹层结构分步固化成型工艺研制的首件新型号整流罩冯卡门锥段,满足设计使用要求.","authors":[{"authorName":"赵锐霞","id":"6d0b970d-2e9d-4c82-a1fa-3158a003ccda","originalAuthorName":"赵锐霞"},{"authorName":"尹亮","id":"922fc883-6865-4df3-8393-3eb39221466c","originalAuthorName":"尹亮"},{"authorName":"潘玲英","id":"c65837a1-503f-4cfd-8773-4d5d7a5ed0c9","originalAuthorName":"潘玲英"}],"doi":"10.3969/j.issn.1007-2330.2012.04.014","fpage":"58","id":"a73bd1ed-8b1a-4faf-aaa8-43f7882b4829","issue":"4","journal":{"abbrevTitle":"YHCLGY","coverImgSrc":"journal/img/cover/YHCLGY.jpg","id":"77","issnPpub":"1007-2330","publisherId":"YHCLGY","title":"宇航材料工艺 "},"keywords":[{"id":"b4460ffb-fdfa-41e7-bfa6-371091ce4719","keyword":"泡沫夹层结构","originalKeyword":"泡沫夹层结构"},{"id":"6144557c-b4d4-441d-b35e-df3eea9ac029","keyword":"冯卡门锥段","originalKeyword":"冯卡门锥段"},{"id":"12578f5e-24e0-4ce5-9465-6b28d57cf2dd","keyword":"成型技术","originalKeyword":"成型技术"}],"language":"zh","publisherId":"yhclgy201204014","title":"PMI 泡沫夹层结构整流罩冯卡门锥段成型技术研究","volume":"42","year":"2012"},{"abstractinfo":"本文针对喷嘴喉部直径为8 mm、出口直径为9.6 mm,压力为0.2~0.6 MPa,的蒸汽在温度变化范围为20~70℃环境水中形成的超音速蒸汽浸没射流凝结进行了实验研究.实验观察到了五种典型的汽羽:渐缩形、膨胀-收缩形、双膨胀-收缩形、膨胀-收缩-发散形和发散形汽羽.实验测定了流场的压力分布并对轴线压力分布规律与汽羽凝结形态进行了对照分析;同时给出了流场的压力分布图,反映了流场中压力的影响范围随着蒸汽入口压力和过冷水温度的增加而逐渐扩大的规律.","authors":[{"authorName":"刘光耀","id":"5498f301-edd9-4b4e-b3ae-9b018a0fac39","originalAuthorName":"刘光耀"},{"authorName":"严俊杰","id":"38abb06e-6b60-4775-9cdf-3aef97ab4993","originalAuthorName":"严俊杰"},{"authorName":"潘冬冬","id":"058b6069-69df-4097-9d1d-1072f80a05aa","originalAuthorName":"潘冬冬"},{"authorName":"李文军","id":"07910661-e65e-4980-8837-d5f4d9130ca4","originalAuthorName":"李文军"},{"authorName":"武心壮","id":"217be352-f79b-4f5e-ae1d-48e2dd02824a","originalAuthorName":"武心壮"},{"authorName":"邢秦安","id":"e4f40e44-0294-4958-83b8-f72d6a860199","originalAuthorName":"邢秦安"}],"doi":"","fpage":"781","id":"4f784ac8-d615-4f0f-b23d-62a565cdc4dc","issue":"5","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"b18179f6-52ed-4be6-ac73-5796b224c8b5","keyword":"超音速射流","originalKeyword":"超音速射流"},{"id":"3f847acb-88dd-45af-81e6-a2fa3314cc9f","keyword":"蒸汽凝结","originalKeyword":"蒸汽凝结"},{"id":"73df61d7-29f2-4d39-9d38-bab7e5911cd5","keyword":"汽羽形状","originalKeyword":"汽羽形状"},{"id":"80c8139c-b14c-478f-8728-234af3e435ba","keyword":"压力分布","originalKeyword":"压力分布"}],"language":"zh","publisherId":"gcrwlxb201005016","title":"超音速蒸汽射流汽羽形状及压力分布的实验研究","volume":"31","year":"2010"},{"abstractinfo":"通过实例对排风井之间设置调风联络巷道的降阻节能效果进行了系统的论述.总结出了排风井之间设置调风联络巷道可获得最优节能效果的重要结论.此结论对于矿山节能和老通风系统改造具有一定的指导意义.","authors":[{"authorName":"陈喜山","id":"f8fb0c50-0032-489b-8913-2be76311e8c9","originalAuthorName":"陈喜山"},{"authorName":"郭晓芳","id":"df0f36c3-c06d-4801-bfa7-9ca043843642","originalAuthorName":"郭晓芳"},{"authorName":"梁晓春","id":"d55747aa-43c6-4db2-9308-b98d99f691b2","originalAuthorName":"梁晓春"},{"authorName":"刘志君","id":"4787e08a-936d-4257-a000-ba64f66ae178","originalAuthorName":"刘志君"},{"authorName":"刘文可","id":"0a2ed410-7bf8-49d9-83ad-c218d0752ffa","originalAuthorName":"刘文可"},{"authorName":"高成勤","id":"67b1463f-c257-4246-8b1d-ce63216cb9c7","originalAuthorName":"高成勤"}],"doi":"10.3969/j.issn.1001-1277.2004.12.007","fpage":"21","id":"b3bcdf3d-e664-4523-9d67-a2e6d4dea057","issue":"12","journal":{"abbrevTitle":"HJ","coverImgSrc":"journal/img/cover/HJ.jpg","id":"44","issnPpub":"1001-1277","publisherId":"HJ","title":"黄金"},"keywords":[{"id":"0f483575-4629-44b0-a3af-c167e719a3aa","keyword":"排风系统","originalKeyword":"排风系统"},{"id":"3a80d54c-6aa7-4d99-910c-a673c5707dc3","keyword":"调风联络巷道","originalKeyword":"调风联络巷道"},{"id":"8aea8f9b-e3ce-4e12-a651-38c107449b27","keyword":"降阻节能","originalKeyword":"降阻节能"}],"language":"zh","publisherId":"huangj200412007","title":"排风井之间设置调风联络巷道的降阻节能作用","volume":"25","year":"2004"}],"totalpage":49,"totalrecord":489}