{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"借助有限元软件Marc,采用三维弹塑性有限元法对4轧机冷轧薄带钢过程带钢变形进行了分析.计算模型对系的弹性变形与带钢的弹塑性变形按照接触问题进行耦合分析,得到了带钢厚度沿带钢宽度方向分布、边部减薄及有载缝等一系列有意义的结果,为精确计算冷轧参数提供了参考数据.","authors":[{"authorName":"时旭","id":"8aae9fd4-43fb-4154-ab6f-18ea5bcd251c","originalAuthorName":"时旭"},{"authorName":"李山青","id":"72613b6e-ea74-4856-886e-b424b0ffbe68","originalAuthorName":"李山青"},{"authorName":"刘相华","id":"3f327f30-63b0-4550-9c0f-89111408d037","originalAuthorName":"刘相华"},{"authorName":"王国栋","id":"f3b36fe5-8207-4d50-be3f-0516a4b58618","originalAuthorName":"王国栋"},{"authorName":"许健勇","id":"2325c600-d450-4ffa-9f6e-3be02a86c00b","originalAuthorName":"许健勇"}],"doi":"","fpage":"45","id":"a4c94d29-9023-4146-82af-ae75fec5361e","issue":"11","journal":{"abbrevTitle":"GT","coverImgSrc":"journal/img/cover/GT.jpg","id":"27","issnPpub":"0449-749X","publisherId":"GT","title":"钢铁"},"keywords":[{"id":"31139d92-addb-4bd2-96d0-27c30a95c5de","keyword":"冷轧","originalKeyword":"冷轧"},{"id":"06912480-7ead-44bb-b951-2a95ef3c73dc","keyword":"4轧机","originalKeyword":"4辊轧机"},{"id":"0194f574-bb9e-4af3-a8b8-226bc1cc778b","keyword":"有限元","originalKeyword":"有限元"},{"id":"8ff9af99-97b0-4374-b314-c303571a8c5a","keyword":"带钢变形","originalKeyword":"带钢变形"}],"language":"zh","publisherId":"gt200411011","title":"薄带钢冷轧过程带钢变形的有限元分析","volume":"39","year":"2004"},{"abstractinfo":"针对普通4轧机在生产过程中所遇到的复合浪、端压靠等问题,经过大量的现场实验与理论研究,充分考虑到4轧机的设备与工艺特点,并涵盖软硬、薄厚、宽窄等多种规格产品的生产需要,以轧机出口带材前张力横向分布最均匀为目标,同时考虑到硬、薄、窄料的压靠治理,并将问压力分布均匀作为约束条件,通过优化型曲线的特征参数,使得型曲线能够适应不同的板形情况,提出了一套以工作型曲线中的余弦分项与支撑边部的高次曲线分项治理边浪、工作型曲线中的高次曲线部分治理压靠、支撑中部的凹形余弦曲线分项减少中浪的组合型设计新方案,既可以治理复合浪形也可以治理单一浪形,还能减缓薄带轧制过程中的端压靠问题,保证产品板形质量的稳定,降低轧辊的磨损.","authors":[{"authorName":"白振华","id":"086b8efc-29d0-45c6-9237-435a00619bc1","originalAuthorName":"白振华"},{"authorName":"周庆田","id":"fa23eb56-016c-4b91-a6a5-805b30e3a66b","originalAuthorName":"周庆田"},{"authorName":"郑志刚","id":"af884534-10e4-428d-9831-7452e6644d5b","originalAuthorName":"郑志刚"},{"authorName":"王云祥","id":"b2895dfe-90d9-4c95-b1b7-6ad936e67ff5","originalAuthorName":"王云祥"}],"doi":"","fpage":"57","id":"752b4e0e-e72c-48a9-90a5-5b31b1a3d2e6","issue":"10","journal":{"abbrevTitle":"GT","coverImgSrc":"journal/img/cover/GT.jpg","id":"27","issnPpub":"0449-749X","publisherId":"GT","title":"钢铁"},"keywords":[{"id":"198bb587-7f6f-4468-a661-715d7bbacecc","keyword":"复合浪","originalKeyword":"复合浪"},{"id":"49322c79-0993-4852-bb66-babe624e9b2b","keyword":"板形","originalKeyword":"板形"},{"id":"8f1c8a6f-e44f-449b-9d93-458cb3a0be5f","keyword":"压靠","originalKeyword":"压靠"},{"id":"ab7d3630-55d2-4143-b3a7-84f9e5552900","keyword":"耗","originalKeyword":"辊耗"}],"language":"zh","publisherId":"gt201010012","title":"普通4轧机型曲线设计新技术","volume":"45","year":"2010"},{"abstractinfo":"采用流面条元法分析带材的三维塑性变形,影响系数法分析系的弹性变形,并将二者耦合,建立了4CVC轧机板形和板凸度的分析计算模型,并对4CVC热带钢连轧机的轧制过程进行了仿真.仿真结果表明,4CVC轧机具有很强的板凸度和较强的板形控制能力;建立的仿真模型实用可靠,仿真精度较高,为4CVC轧机热轧带材板形和板凸度的仿真与分析提供了理论基础.","authors":[{"authorName":"王英睿","id":"53a5bdd1-fe34-43d3-932a-eb9cb3715725","originalAuthorName":"王英睿"},{"authorName":"崔振山","id":"13a98a55-891b-4fcc-bf8e-5f7b8352506f","originalAuthorName":"崔振山"},{"authorName":"袁建光","id":"c1b5195f-bf95-44e3-80f6-6507f6f481ee","originalAuthorName":"袁建光"}],"doi":"","fpage":"46","id":"f9f8d6a9-4fc1-4055-8513-f79b47df7f1f","issue":"12","journal":{"abbrevTitle":"GT","coverImgSrc":"journal/img/cover/GT.jpg","id":"27","issnPpub":"0449-749X","publisherId":"GT","title":"钢铁"},"keywords":[{"id":"a0928757-0921-41bb-a4a4-4e88ccc09456","keyword":"4CVC轧机","originalKeyword":"4辊CVC轧机"},{"id":"ec39f8d4-bb84-4791-a877-cc9529062e5a","keyword":"热带钢连轧","originalKeyword":"热带钢连轧"},{"id":"7daf25ed-c0cd-4f23-9492-b5b573921ccb","keyword":"流面条元法","originalKeyword":"流面条元法"},{"id":"5186ea69-f5e1-4eb4-98a0-82f807088f58","keyword":"板形","originalKeyword":"板形"},{"id":"0f47eb13-69e9-43fa-a8bb-0688ae1738b3","keyword":"板凸度","originalKeyword":"板凸度"}],"language":"zh","publisherId":"gt200512012","title":"4CVC热带钢连轧机轧制过程的仿真","volume":"40","year":"2005"},{"abstractinfo":"采用流面条元法分析带材的三维塑性变形,影响系数法分析系的弹性变形,并将二者耦合,建立了4轧机板形和板凸度的分析计算模型,并针对板宽对4CVC热带钢轧机板形控制能力的影响进行了仿真研究.仿真结果表明,随着板宽的增加,出口板凸度先增大后减小,缝变得越来越平缓;单位宽度间压力增大,且沿横向的变化比较均匀;板带的宽展减小.对热带钢轧制,乃至厚板轧制具有重要的意义.","authors":[{"authorName":"王英睿","id":"5585e71a-06ef-4195-88f5-ccf4b923da42","originalAuthorName":"王英睿"},{"authorName":"袁建光","id":"46f383fe-ceba-44fa-99d6-0f4c315b1ab0","originalAuthorName":"袁建光"},{"authorName":"刘宏民","id":"5ea597ac-259d-4531-a168-7e98ef4d88bf","originalAuthorName":"刘宏民"}],"doi":"","fpage":"35","id":"64237431-81f0-428f-843e-d0f2f222e251","issue":"10","journal":{"abbrevTitle":"GT","coverImgSrc":"journal/img/cover/GT.jpg","id":"27","issnPpub":"0449-749X","publisherId":"GT","title":"钢铁"},"keywords":[{"id":"5259d783-4f62-42f8-a15e-15ee0cc124ab","keyword":"4CVC轧机","originalKeyword":"4辊CVC轧机"},{"id":"33dac2ac-90b7-4502-8741-18303af777a3","keyword":"流面条元法","originalKeyword":"流面条元法"},{"id":"83c2b44f-1fd1-49ae-bc79-b6f746da0413","keyword":"板形","originalKeyword":"板形"},{"id":"4547afea-42de-41de-a947-293bbcb50942","keyword":"板凸度","originalKeyword":"板凸度"},{"id":"a092ca13-7e12-457d-bbe3-b267f16e2e67","keyword":"单位轧制压力","originalKeyword":"单位轧制压力"},{"id":"8563bcbe-27e5-4967-a829-95034eb92436","keyword":"仿真","originalKeyword":"仿真"}],"language":"zh","publisherId":"gt200410009","title":"板宽对4CVC热轧机板形控制能力的影响","volume":"39","year":"2004"},{"abstractinfo":"轧辊是钢铁企业的重要消耗品,降低轧辊消耗是当前钢铁企业降本增效的要求之一.硅钢断带和粘钢容易引起支撑面掉肉及裂纹,造成支撑磨削差异大、配难.合理设计配径差可方便轧辊管理,减小支撑下机后不必要的磨削量,显著降低耗成本.但是支撑是影响轧制稳定性的重要部件,为此从动力学原理分析了工作驱动的UCM轧机上下支撑径差异对加减速过程驱动力矩的影响,根据弹性力学原理分析了上下支撑和中间压扁量差异对带钢厚度设定和控制精度的影响.生产应用最新配方案表明,合理的配策略不仅不会影响生产,而且方便轧辊管理,降低耗成本.","authors":[{"authorName":"马晓宝","id":"b2b0a544-1770-4e21-8f1a-83779fad2022","originalAuthorName":"马晓宝"},{"authorName":"王东城","id":"ee4c9aae-c6d5-4d60-abab-f536e5d00aae","originalAuthorName":"王东城"},{"authorName":"张龙","id":"d82d39b1-75c9-4786-9cb1-5154aaee96e9","originalAuthorName":"张龙"},{"authorName":"刘宏民","id":"ccec14f1-4c3d-4b26-badd-b34e2319b37b","originalAuthorName":"刘宏民"},{"authorName":"曲义振","id":"1c08713d-f513-4b82-878f-ee8fe2abf2a9","originalAuthorName":"曲义振"}],"doi":"10.13228/j.boyuan.issn0449-749x.20160098","fpage":"55","id":"7e75edf3-3363-4f04-899f-7d4afd668bd7","issue":"11","journal":{"abbrevTitle":"GT","coverImgSrc":"journal/img/cover/GT.jpg","id":"27","issnPpub":"0449-749X","publisherId":"GT","title":"钢铁"},"keywords":[{"id":"020f9f18-af77-41b6-be8c-bcef39e70c3e","keyword":"UCM轧机","originalKeyword":"UCM轧机"},{"id":"b4254252-85f4-4ae9-a27b-7b7da3dd297b","keyword":"支撑","originalKeyword":"支撑辊"},{"id":"6513bbb3-451b-476a-8b10-44caf7165a9d","keyword":"配策略","originalKeyword":"配辊策略"},{"id":"5901ac67-8953-4d1e-a571-987f63226c81","keyword":"驱动力矩","originalKeyword":"驱动力矩"},{"id":"7df0156a-5718-4246-80d6-cf9777c846fd","keyword":"间压扁","originalKeyword":"辊间压扁"}],"language":"zh","publisherId":"gt201611010","title":"工作驱动UCM轧机支撑策略","volume":"51","year":"2016"},{"abstractinfo":"针对国内中厚板轧机多采用平轧制的现状,根据国内某2500 mm中厚板轧机机型特点,建立了支承型优化目标函数,采用4次曲线作为四轧机支承最优型曲线形式,提出了型优化的设计方法,提高了板形控制效果和成材率。","authors":[{"authorName":"田勇","id":"f2c999cf-8d50-44c2-b535-311a98436420","originalAuthorName":"田勇"},{"authorName":"胡贤磊","id":"cb61ceaa-8bdc-44d3-ab2c-a14e043f26e0","originalAuthorName":"胡贤磊"},{"authorName":"王昭东","id":"9d000698-5648-4cfb-8efb-2454efdfcc0f","originalAuthorName":"王昭东"},{"authorName":"赵忠","id":"4e304993-ece1-415c-86a1-bbaed5311f0c","originalAuthorName":"赵忠"},{"authorName":"王国栋","id":"5dc4c045-fef5-4bfc-a2e2-b0c681cbfa88","originalAuthorName":"王国栋"}],"categoryName":"|","doi":"","fpage":"23","id":"564b5b78-05ad-4025-8947-4a96fcf277d9","issue":"10","journal":{"abbrevTitle":"GTYJXB","coverImgSrc":"journal/img/cover/GTYJXB.jpg","id":"30","issnPpub":"1001-0963","publisherId":"GTYJXB","title":"钢铁研究学报"},"keywords":[{"id":"b8b26669-c9b3-448c-ad4a-6bb2198f50fe","keyword":"中厚板轧机;支承;型设计;目标函数;板形控制","originalKeyword":"中厚板轧机;支承辊;辊型设计;目标函数;板形控制"}],"language":"zh","publisherId":"1001-0963_2006_10_9","title":"2500 mm中厚板精轧机支承型优化设计","volume":"18","year":"2006"},{"abstractinfo":"针对国内中厚板轧机多采用平轧制的现状,根据国内某2500 mm中厚板轧机机型特点,建立了支承型优化目标函数,采用4次曲线作为四轧机支承最优型曲线形式,提出了型优化的设计方法,提高了板形控制效果和成材率.","authors":[{"authorName":"田勇","id":"35b4e1f8-3702-47e7-b032-e5c7accef03e","originalAuthorName":"田勇"},{"authorName":"胡贤磊","id":"d5bc1229-1d4c-4780-b063-4c7826850850","originalAuthorName":"胡贤磊"},{"authorName":"王昭东","id":"94b6cdf4-74f4-4aad-880a-88a9dc86c38e","originalAuthorName":"王昭东"},{"authorName":"赵忠","id":"f54daa29-bbf3-494d-a361-c8938d541f34","originalAuthorName":"赵忠"},{"authorName":"王国栋","id":"eab28fa8-647e-4277-a6c3-311752a806a5","originalAuthorName":"王国栋"}],"doi":"","fpage":"23","id":"58595276-fa72-4bcd-9aa2-35c32e277f62","issue":"10","journal":{"abbrevTitle":"GTYJXB","coverImgSrc":"journal/img/cover/GTYJXB.jpg","id":"30","issnPpub":"1001-0963","publisherId":"GTYJXB","title":"钢铁研究学报"},"keywords":[{"id":"7bcb189d-f8ad-4988-8fec-a76accf07cd7","keyword":"中厚板轧机","originalKeyword":"中厚板轧机"},{"id":"bd9bc54f-d1a4-4bbd-99c4-e6d71df60361","keyword":"支承","originalKeyword":"支承辊"},{"id":"aca9fe78-fc03-4d1f-8947-980a4199d3ed","keyword":"型设计","originalKeyword":"辊型设计"},{"id":"0566ecb8-867f-43fb-824d-e4a18d8140d8","keyword":"目标函数","originalKeyword":"目标函数"},{"id":"9216a8a0-30c6-46f0-a595-a05fcf5db6aa","keyword":"板形控制","originalKeyword":"板形控制"}],"language":"zh","publisherId":"gtyjxb200610006","title":"2500 mm中厚板精轧机支承型优化设计","volume":"18","year":"2006"},{"abstractinfo":"采用解析法和有限元法进行了分析,对比2种计算结果看出解析法所得结果可对系变形定性分析.另外,利用系弹性曲线对十八轧机和四轧机系的刚度进行了比较,得出前者的刚度大于后者的结论.","authors":[{"authorName":"郭彩虹","id":"d15f5c35-e7a7-4934-a908-98f0cfa4e7c3","originalAuthorName":"郭彩虹"},{"authorName":"罗德兴","id":"c6b49db0-63ef-4210-84ac-8ee9717b1f96","originalAuthorName":"罗德兴"},{"authorName":"杨海波","id":"730b6774-c5ad-4a70-9079-7b7ce117f533","originalAuthorName":"杨海波"}],"doi":"10.3969/j.issn.1006-9356.2008.02.006","fpage":"22","id":"cda22cc3-3020-464f-b0a0-5464235696df","issue":"2","journal":{"abbrevTitle":"ZGYJ","coverImgSrc":"journal/img/cover/ZGYJ.jpg","id":"87","issnPpub":"1006-9356","publisherId":"ZGYJ","title":"中国冶金"},"keywords":[{"id":"5d23d955-863a-4fb2-a755-dc9cf9b277ac","keyword":"十八轧机","originalKeyword":"十八辊轧机"},{"id":"6aef3457-e097-4e0e-9a54-32c8db644857","keyword":"系变形","originalKeyword":"辊系变形"},{"id":"17f973e4-209c-43c2-a97e-228db4a52ea5","keyword":"系弹性曲线","originalKeyword":"辊系弹性曲线"},{"id":"2940ca3d-7f7e-47c0-a2f5-9dd66067bb0e","keyword":"弹塑性有限元","originalKeyword":"弹塑性有限元"}],"language":"zh","publisherId":"zgyj200802006","title":"新十八轧机静压下系变形分析","volume":"18","year":"2008"},{"abstractinfo":"针对以往冷轧生产过程中由于不配置凸度仪而无法对成品断面特性进行直观动态显示与定量控制的问题,经过大量的现场试验和理论研究,以普通4冷连轧机组为研究对象,综合考虑到冷连轧生产过程的设备与工艺特点,充分利用上游热连轧机组出口凸度仪对断面形状所测的来料数据与冷连轧机组一级系统所提供的实际轧制压力、张力、弯力、倾量等实时轧制工艺参数,结合冷轧机组带材板厚分布机制模型,提出了一套完整的虚拟凸度仪设计及其断面特性反馈控制技术,不但可以实现冷轧成品断面形状的动态显示与楔形量、板凸度等断面特性参数的动态预报,而且可以对冷轧过程中带材的断面特性进行有效的反馈控制,大大提高了实际生产中冷轧成品带钢的断面质量,值得进一步推广应用.","authors":[{"authorName":"白振华","id":"3449484e-8dd0-4a45-9b97-9d0088b0fdc6","originalAuthorName":"白振华"},{"authorName":"石晓东","id":"360ae493-93a4-429a-bc82-deb8f04e2b99","originalAuthorName":"石晓东"},{"authorName":"王瑞","id":"a44b3e27-7494-4429-9e11-e764796a7fa9","originalAuthorName":"王瑞"},{"authorName":"李和","id":"c12c152f-1416-4837-821a-73b60dbdb76a","originalAuthorName":"李和"},{"authorName":"程其华","id":"2cda9eff-489a-47fc-92a8-eef49d09b219","originalAuthorName":"程其华"},{"authorName":"姚寿军","id":"60c560af-0227-4b49-9e5b-d21f0614d9e5","originalAuthorName":"姚寿军"}],"doi":"","fpage":"58","id":"ba04673d-ab88-49f3-8ef0-93fbfb9740fd","issue":"9","journal":{"abbrevTitle":"GTYJXB","coverImgSrc":"journal/img/cover/GTYJXB.jpg","id":"30","issnPpub":"1001-0963","publisherId":"GTYJXB","title":"钢铁研究学报"},"keywords":[{"id":"51a99ce3-3843-4fac-b499-9a95e235b55f","keyword":"冷连轧","originalKeyword":"冷连轧"},{"id":"292634cc-e10f-411b-b17a-e2f9b94f60ed","keyword":"虚拟凸度仪","originalKeyword":"虚拟凸度仪"},{"id":"7c7b51c2-debb-48ea-90a7-df6137061396","keyword":"断面特性","originalKeyword":"断面特性"},{"id":"69911cd5-60d6-44d6-8e33-af9c97831f15","keyword":"反馈控制","originalKeyword":"反馈控制"}],"language":"zh","publisherId":"gtyjxb201309011","title":"4冷连轧机组虚拟凸度仪的设计及断面特性反馈控制技术的开发","volume":"25","year":"2013"},{"abstractinfo":"HC轧机采用中间辊轴向窜动技术,使轧机的横向刚度显著增加,提高了板形控制能力。但由于中间辊轴向窜动后,在工作与中间、中间与支撑间形成接触压力峰值,导致轧辊局部磨损及带材表面质量问题。本文建立了HC轧机板形和断面形状计算模型,研究了支撑及工作型曲线对间接触压力分布的影响规律,在此基础上优化了1220HC轧机支撑及工作型曲线。理论计算及工业生产试验表明,在保证轧机板形控制能力前提下,在HC轧机支撑及工作上采用合适的型曲线,可将支撑与中间间的接触压力峰值降低20%以上,将工作与中间间的接触压力峰值降低10%以上,从而避免间接触压力峰值带来的轧辊局部磨损及相应的带钢表面质量问题。","authors":[{"authorName":"李俊洪\t邓菡\t周三保","id":"2cff29a5-5e08-43fa-93f0-52c41a73a732","originalAuthorName":"李俊洪\t邓菡\t周三保"}],"categoryName":"|","doi":"","fpage":"64","id":"5dd42e05-9ace-4ab8-a5c3-6142603de0da","issue":"11","journal":{"abbrevTitle":"GT","coverImgSrc":"journal/img/cover/GT.jpg","id":"27","issnPpub":"0449-749X","publisherId":"GT","title":"钢铁"},"keywords":[{"id":"d06855d9-bae4-4817-8e71-c9cf73ea803e","keyword":"HC轧机;间接触压力;型曲线","originalKeyword":"HC轧机;辊间接触压力;辊型曲线"}],"language":"zh","publisherId":"0449-749X_2009_11_20","title":"HC轧机型曲线优化","volume":"44","year":"2009"}],"totalpage":3792,"totalrecord":37916}