M.Sakaguchi
,
M.Okazaki
金属学报(英文版)
An analytical method to investigate the morphological evolution of the cellular microstructure is explored and proposed. The method is essentially based on the Eshelby's micromechanics theory, and it is extended so as to be applied for a material system containing inclusions with high volume fraction, by employing the average stress field approximation by Mori and Tanaka. The proposed method enables us to discuss a stable shape of precipitate in the material system, which must be influenced by many factors: e.g., volume fraction of precipitate; Young's modulus ratio and lattice misfit between matrix and precipitate; external stress field in multiaxial state; and heterogeneity of plastic strain between matrix and precipitate. A series of numerical calculations were summarized on stable shape maps. The application of the method to predict the γ' rafting in superaUoys during creep showed that the heterogeneity of plastic strain between matrix and precipitates may play a significant role in the shape stability of the precipitate. Furthermore, it was shown that the method was successfully applied to estimate the morphology of the cellular microstructure formed in CMSX-4 single crystal Ni-based superaUoy.
关键词:
single crystal Ni-based superalloy
,
null
,
null
周海滔
,
轩福贞
,
王正东
机械工程材料
通过建立镍基单晶高温合金的蠕变断裂寿命与合金成分、试验温度以及试验应力的 4层Abductive网络预测模型,对CMSX-4与CMSX-10合金进行了不同试验条件下的寿命预测,并用试验所得的合金lgt-lgσ曲线进行了验证.结果表明:Abductive网络具有高的准确性与很好的适用性,能够准确预测不同成分镍基单晶高温合金的蠕变断裂寿命.
关键词:
镍基单晶高温合金
,
Abductive网络
,
蠕变断裂寿命